skip to main content


Search for: All records

Creators/Authors contains: "Lim, Y."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Most students enter college without any exposure to polymer science, which leads to the poor understanding and slow implementation of plastics recycling programs in the United States. To address the knowledge gap in chemical recycling, we introduce a 2-part laboratory experiment that was conducted in multiple high schools and public outreach events to demonstrate the depolymerization of PET via aminolysis and the remanufacturing of cleaved PET fragments into a new aramid polymer. Student experiences were evaluated with two post-lab assignments. 
    more » « less
    Free, publicly-accessible full text available December 11, 2024
  2. We introduce an electrochemical approach to recycle carbon fiber (CF) fabrics from amine-epoxy carbon fiber-reinforced polymers (CFRPs). Our novel method utilizes a Kolbe-like mechanism to generate methyl radicals from CH 3 COOH to cleave C–N bonds within epoxy matrices via hydrogen atom abstraction. Recovered CFs are then remanufactured into CFRPs without resizing. 
    more » « less
    Free, publicly-accessible full text available July 27, 2024
  3. This presentation will describe conditions for the use of oxygen as a reagent for the selective cleavage of thermoset composites. Carbon fiber-reinforced polymer (CFRP) composites have a prominent role in aviation, sporting goods, marine, and other manufacturing sectors and are accumulating en masse as waste, both at end-of-life and as manufacturing defects. We have recently introduced a method to use oxygen itself along with an appropriate catalyst selectively to disassemble such fully-cured composite wastes to recover both ordered carbon fiber sheets and organic materials suitable for re-manufacturing of second-life resin systems. 
    more » « less
  4. Guichard, P. ; Hamel, V. (Ed.)
    This chapter describes two mechanical expansion microscopy methods with accompanying step-by-step protocols. The first method, mechanically resolved expansion microscopy, uses non-uniform expansion of partially digested samples to provide the imaging contrast that resolves local mechanical properties. Examining bacterial cell wall with this method, we are able to distinguish bacterial species in mixed populations based on their distinct cell wall rigidity and detect cell wall damage caused by various physiological and chemical perturbations. The second method is mechanically locked expansion microscopy, in which we use a mechanically stable gel network to prevent the original polyacrylate network from shrinking in ionic buffers. This method allows us to use anti-photobleaching buffers in expansion microscopy, enabling detection of novel ultra-structures under the optical diffraction limit through super-resolution single molecule localization microscopy on bacterial cells and whole-mount immunofluorescence imaging in thick animal tissues. We also discuss potential applications and assess future directions. 
    more » « less
  5. null (Ed.)
  6. null (Ed.)